Build Better Generative Adversarial Networks (GANs)

Software > Computer Software > Educational Software DeepLearning.AI

Course Overview

In this course, you will: - Assess the challenges of evaluating GANs and compare different generative models - Use the Fréchet Inception Distance (FID) method to evaluate the fidelity and diversity of GANs - Identify sources of bias and the ways to detect it in GANs - Learn and implement the techniques associated with the state-of-the-art StyleGANs The DeepLearning.AI Generative Adversarial Networks (GANs) Specialization provides an exciting introduction to image generation with GANs, charting a path from foundational concepts to advanced techniques through an easy-to-understand approach. It also covers social implications, including bias in ML and the ways to detect it, privacy preservation, and more. Build a comprehensive knowledge base and gain hands-on experience in GANs. Train your own model using PyTorch, use it to create images, and evaluate a variety of advanced GANs. This Specialization provides an accessible pathway for all levels of learners looking to break into the GANs space or apply GANs to their own projects, even without prior familiarity with advanced math and machine learning research.

Course FAQs

What are the prerequisites for 'Build Better Generative Adversarial Networks (GANs)'?

Prerequisites for this continuing education class are set by DeepLearning.AI. Most professional development online classes benefit from some prior knowledge. Please check the provider's page for specific requirements.

Will I receive a certificate for this CE class?

Yes, upon successful completion, DeepLearning.AI typically offers a shareable certificate to showcase your new skills and fulfill your continuing education requirements.

How long does this online course take to complete?

Completion times for online continuing education courses vary. The provider's website will have the most accurate estimate of the time commitment needed.