Control of Nonlinear Spacecraft Attitude Motion

$99
ENROLL NOWCourse Overview
This course trains you in the skills needed to program specific orientation and achieve precise aiming goals for spacecraft moving through three dimensional space. First, we cover stability definitions of nonlinear dynamical systems, covering the difference between local and global stability. We then analyze and apply Lyapunov's Direct Method to prove these stability properties, and develop a nonlinear 3-axis attitude pointing control law using Lyapunov theory. Finally, we look at alternate feedback control laws and closed loop dynamics. After this course, you will be able to... * Differentiate between a range of nonlinear stability concepts * Apply Lyapunov’s direct method to argue stability and convergence on a range of dynamical systems * Develop rate and attitude error measures for a 3-axis attitude control using Lyapunov theory * Analyze rigid body control convergence with unmodeled torque The material covered is taking from the book "Analytical Mechanics of Space Systems" available at https://arc.aiaa.org/doi/book/10.2514/4.105210.
Course FAQs
What are the prerequisites for 'Control of Nonlinear Spacecraft Attitude Motion'?
Prerequisites for this continuing education class are set by University of Colorado Boulder. Most professional development online classes benefit from some prior knowledge. Please check the provider's page for specific requirements.
Will I receive a certificate for this CE class?
Yes, upon successful completion, University of Colorado Boulder typically offers a shareable certificate to showcase your new skills and fulfill your continuing education requirements.
How long does this online course take to complete?
Completion times for online continuing education courses vary. The provider's website will have the most accurate estimate of the time commitment needed.





