Foundations of Machine Learning

Software > Computer Software > Educational Software Coursera

Course Overview

Welcome to the Foundations of Machine Learning, your practical guide to fundamental techniques powering data-driven solutions. Master key ML domains—supervised learning (prediction), unsupervised learning (pattern discovery), data preprocessing & feature engineering, and time series forecasting—using Pandas, Scikit-learn, Statsmodels, and Prophet to tackle real-world challenges. By the end of this course, you'll be able to: - Implement and evaluate key supervised models (e.g., regression, classification, Tree-based models & SVMs) for prediction. - Apply unsupervised methods (e.g., K-Means, Isolation Forest) for segmentation and anomaly detection. - Perform robust data preprocessing: handle missing data, encode categoricals, scale features, and apply dimensionality reduction (PCA). - Build and analyze time series forecasts with ARIMA, Exponential Smoothing, Holt-Winters and Prophet. Through hands-on exercises and a capstone customer purchase prediction project, you'll develop versatile skills to confidently address common machine learning challenges.

Course FAQs

What are the prerequisites for 'Foundations of Machine Learning'?

Prerequisites for this continuing education class are set by Coursera. Most professional development online classes benefit from some prior knowledge. Please check the provider's page for specific requirements.

Will I receive a certificate for this CE class?

Yes, upon successful completion, Coursera typically offers a shareable certificate to showcase your new skills and fulfill your continuing education requirements.

How long does this online course take to complete?

Completion times for online continuing education courses vary. The provider's website will have the most accurate estimate of the time commitment needed.