Introduction to Neural Networks

Software > Computer Software > Educational Software Johns Hopkins University

Course Overview

The course "Introduction to Neural Networks" provides a comprehensive introduction to the foundational concepts of neural networks, equipping learners with essential skills in deep learning and machine learning. Dive into the mathematics that drive neural network algorithms and explore the optimization techniques that enhance their performance. Gain hands-on experience training machine learning models using gradient descent and evaluate their effectiveness in practical scenarios. You’ll also delve into the architecture of feedforward neural networks and the innovative techniques used to prevent overfitting, such as dropout and regularization. The course uniquely emphasizes Convolutional Neural Networks (CNNs), highlighting their applications in fields like computer vision and image processing. Real-world examples and research insights will help you stay current with advancements in neural networks while preparing you to propose innovative solutions for emerging challenges. This course offers the tools and knowledge to advance your expertise in algorithms and machine learning methodologies.

Course FAQs

What are the prerequisites for 'Introduction to Neural Networks'?

Prerequisites for this continuing education class are set by Johns Hopkins University. Most professional development online classes benefit from some prior knowledge. Please check the provider's page for specific requirements.

Will I receive a certificate for this CE class?

Yes, upon successful completion, Johns Hopkins University typically offers a shareable certificate to showcase your new skills and fulfill your continuing education requirements.

How long does this online course take to complete?

Completion times for online continuing education courses vary. The provider's website will have the most accurate estimate of the time commitment needed.