Introduction to RNN and DNN

Software > Computer Software > Educational Software Packt

Course Overview

Artificial Intelligence is transforming industries by enabling machines to learn from data and make intelligent decisions. This course offers an in-depth exploration of Recurrent Neural Networks (RNN) and Deep Neural Networks (DNN), two pivotal AI technologies. You’ll start with the basics of RNNs and their applications, followed by an examination of DNNs, including their architecture and implementation using PyTorch. You will master building and deploying sophisticated AI models, develop RNN models for tasks like speech recognition and machine translation, understand and implement DNN architectures, and utilize PyTorch for model building and optimization. By the end, you'll have a robust knowledge of RNNs and DNNs and the confidence to apply these techniques in real-world scenarios. Designed for data scientists, machine learning engineers, and AI enthusiasts with basic programming (preferably Python) and statistics knowledge, this course combines theory with practical application through video lectures, hands-on exercises, and real-world examples.

Course FAQs

What are the prerequisites for 'Introduction to RNN and DNN'?

Prerequisites for this continuing education class are set by Packt. Most professional development online classes benefit from some prior knowledge. Please check the provider's page for specific requirements.

Will I receive a certificate for this CE class?

Yes, upon successful completion, Packt typically offers a shareable certificate to showcase your new skills and fulfill your continuing education requirements.

How long does this online course take to complete?

Completion times for online continuing education courses vary. The provider's website will have the most accurate estimate of the time commitment needed.