Network Modeling and Analysis in Python

$49
ENROLL NOWCourse Overview
In “Network Modeling and Analysis in Python,” you will learn how different types of network analysis can be used to make sense of complex systems. You’ll learn how algorithms can be used to better understand disease epidemics, human community structure, and the flow of information on social media. This course combines network theory with empirical analysis of real-world networks using the Python library NetworkX. You’ll learn about community structure in networks as well as several popular algorithms for community detection and applications. This course introduces a wide range of advanced network models. You’ll study random network generation models and how they can be used to create realistic graphs and explain how networks function. You’ll also learn about models that explain diffusion and the spread of epidemics in networks, such as the SI, SIS, SIR, independent cascade, and linear threshold models. This is the third course in “More Applied Data Science with Python,” a four-course series focused on helping you apply advanced data science techniques using Python. It is recommended that all learners complete the Applied Data Science with Python specialization prior to beginning this course.
Course FAQs
What are the prerequisites for 'Network Modeling and Analysis in Python'?
Prerequisites for this continuing education class are set by University of Michigan. Most professional development online classes benefit from some prior knowledge. Please check the provider's page for specific requirements.
Will I receive a certificate for this CE class?
Yes, upon successful completion, University of Michigan typically offers a shareable certificate to showcase your new skills and fulfill your continuing education requirements.
How long does this online course take to complete?
Completion times for online continuing education courses vary. The provider's website will have the most accurate estimate of the time commitment needed.





