Последовательные модели

Software > Computer Software > Educational Software DeepLearning.AI

Course Overview

Данный курс научит вас строить модели естественных языков, звуков и других последовательных данных. Благодаря глубокому обучению последовательные алгоритмы сегодня работают в разы лучше, чем ещё два года назад. Это открывает широчайший спектр возможностей применения алгоритмов в распознавании речи, синтезе музыки, чат-ботах, машинном переводе, понимании естественных языков и во многом другом. Вы научитесь: — строить и обучать рекуррентные нейронные сети (РНС, RNN), а также широко используемые управляемые рекуррентные блоки (УРБ, GRU) и долгую краткосрочную память (ДКП, LSTM); — применять последовательные модели в задачах по обработке естественного языка, включая синтез текста; — применять модели последовательностей к звуковой информации, например для распознавания речи или синтеза музыки. Это пятый и заключительный курс специализации «Глубокое обучение». Задача по программированию машинного перевода с глубоким обучением, содержащаяся в этом курсе, разработана deeplearning.ai совместно с партнером — Институтом глубокого обучения NVIDIA (DLI). У вас будет возможность создать проект по глубокому обучению с современным, актуальным для индустрии содержанием.

Course FAQs

What are the prerequisites for 'Последовательные модели'?

Prerequisites for this continuing education class are set by DeepLearning.AI. Most professional development online classes benefit from some prior knowledge. Please check the provider's page for specific requirements.

Will I receive a certificate for this CE class?

Yes, upon successful completion, DeepLearning.AI typically offers a shareable certificate to showcase your new skills and fulfill your continuing education requirements.

How long does this online course take to complete?

Completion times for online continuing education courses vary. The provider's website will have the most accurate estimate of the time commitment needed.