Recommender Systems: An Applied Approach using Deep Learning

Software > Computer Software > Educational Software Packt

Course Overview

Updated in May 2025. This course now features Coursera Coach! A smarter way to learn with interactive, real-time conversations that help you test your knowledge, challenge assumptions, and deepen your understanding as you progress through the course. Recommender systems are used in various areas with commonly recognized examples, including playlist generators for video and music services, product recommenders for online stores and social media platforms, and open web content recommenders. Recommender systems have also been developed to explore research articles and experts, collaborators, and financial services. The course begins with an introduction to deep learning concepts to develop recommender systems and a course overview. The course advances to topics covered, including deep learning for recommender systems, understanding the pros and cons of deep learning, recommendation inference, and deep learning-based recommendation approach. You will then explore neural collaborative filtering and learn how to build a project based on the Amazon Product Recommendation System. You will learn to install the required packages, analyze data for product recommendations, prepare data, and model development using a two-tower approach. You will learn to implement a TensorFlow recommender and test a recommender model. You will make predictions using the built recommender system. Upon completion, you can relate the concepts and theories for recommender systems in various domains and implement deep learning models for building real-world recommendation systems. This course is designed for individuals looking to advance their skills in applied deep learning, understand relationships of data analysis with deep learning, build customized recommender systems for their applications, and implement deep learning algorithms for recommender systems. The prerequisites include a basic to intermediate knowledge of Python and Pandas library.

Course FAQs

What are the prerequisites for 'Recommender Systems: An Applied Approach using Deep Learning'?

Prerequisites for this continuing education class are set by Packt. Most professional development online classes benefit from some prior knowledge. Please check the provider's page for specific requirements.

Will I receive a certificate for this CE class?

Yes, upon successful completion, Packt typically offers a shareable certificate to showcase your new skills and fulfill your continuing education requirements.

How long does this online course take to complete?

Completion times for online continuing education courses vary. The provider's website will have the most accurate estimate of the time commitment needed.