Mastering Neural Networks and Model Regularization

$49
ENROLL NOWCourse Overview
The course "Mastering Neural Networks and Model Regularization" dives deep into the fundamentals and advanced techniques of neural networks, from understanding perceptron-based models to implementing cutting-edge convolutional neural networks (CNNs). This course offers hands-on experience with real-world datasets, such as MNIST, and focuses on practical applications using the PyTorch framework. Learners will explore key regularization techniques like L1, L2, and drop-out to reduce model overfitting, as well as decision tree pruning. What makes this course unique is its emphasis on building neural networks from scratch, allowing learners to grasp the intricate details of model design and training. Additionally, the course covers computational graphs, activation and loss functions, and how to efficiently utilize GPUs for faster computation. Learners will also delve into CNNs for image and audio processing, gaining insights into cutting-edge applications in these fields. By completing this course, learners will develop advanced skills in neural network design, model regularization, and the use of PyTorch for deep learning tasks—empowering them to tackle complex machine learning challenges with confidence.
Course FAQs
What are the prerequisites for 'Mastering Neural Networks and Model Regularization'?
Prerequisites for this continuing education class are set by Johns Hopkins University. Most professional development online classes benefit from some prior knowledge. Please check the provider's page for specific requirements.
Will I receive a certificate for this CE class?
Yes, upon successful completion, Johns Hopkins University typically offers a shareable certificate to showcase your new skills and fulfill your continuing education requirements.
How long does this online course take to complete?
Completion times for online continuing education courses vary. The provider's website will have the most accurate estimate of the time commitment needed.





